Comparison of different moment-closure approximations for stochastic chemical kinetics.
نویسندگان
چکیده
In recent years, moment-closure approximations (MAs) of the chemical master equation have become a popular method for the study of stochastic effects in chemical reaction systems. Several different MA methods have been proposed and applied in the literature, but it remains unclear how they perform with respect to each other. In this paper, we study the normal, Poisson, log-normal, and central-moment-neglect MAs by applying them to understand the stochastic properties of chemical systems whose deterministic rate equations show the properties of bistability, ultrasensitivity, and oscillatory behaviour. Our results suggest that the normal MA is favourable over the other studied MAs. In particular, we found that (i) the size of the region of parameter space where a closure gives physically meaningful results, e.g., positive mean and variance, is considerably larger for the normal closure than for the other three closures, (ii) the accuracy of the predictions of the four closures (relative to simulations using the stochastic simulation algorithm) is comparable in those regions of parameter space where all closures give physically meaningful results, and (iii) the Poisson and log-normal MAs are not uniquely defined for systems involving conservation laws in molecule numbers. We also describe the new software package MOCA which enables the automated numerical analysis of various MA methods in a graphical user interface and which was used to perform the comparative analysis presented in this paper. MOCA allows the user to develop novel closure methods and can treat polynomial, non-polynomial, as well as time-dependent propensity functions, thus being applicable to virtually any chemical reaction system.
منابع مشابه
The Linear-Noise Approximation and moment-closure approximations for stochastic chemical kinetics
This is a short review of two common approximations in stochastic chemical and biochemical kinetics. It will appear as Chapter 6 in the book"Quantitative Biology: Theory, Computational Methods and Examples of Models"edited by Brian Munsky, Lev Tsimring and Bill Hlavacek (to be published in late 2017/2018 by MIT Press). All chapter references in this article refer to chapters in the aforemention...
متن کاملDynamic Bounds on Stochastic Chemical Kinetic Systems Using Semidefinite Programming
The method of moments has been proposed as a potential means to reduce the dimensionality of the chemical master equation (CME) appearing in stochastic chemical kinetics. However, attempts to apply the method of moments to the CME usually result in the so-called closure problem. Several authors have proposed moment closure schemes, which allow them to obtain approximations of quantities of inte...
متن کاملValidity conditions for moment closure approximations in stochastic chemical kinetics.
Approximations based on moment-closure (MA) are commonly used to obtain estimates of the mean molecule numbers and of the variance of fluctuations in the number of molecules of chemical systems. The advantage of this approach is that it can be far less computationally expensive than exact stochastic simulations of the chemical master equation. Here, we numerically study the conditions under whi...
متن کاملApproximation and inference methods for stochastic biochemical kinetics - a tutorial review
Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are governed by the Chemical Master Equation. Despite its simple structure, no analytic solutions to the Chemical Master Equation are known for most s...
متن کاملMoment closure approximations for stochastic kinetic models with rational rate laws.
Stochastic models are often used when modelling chemical species that have low numbers of molecules. However, as these models become large, it can become computationally expensive to simulate even a single realisation of the system since even efficient simulation techniques have a high computational cost. One possible technique to approximate the stochastic system is moment closure. The moment ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 143 18 شماره
صفحات -
تاریخ انتشار 2015